Generalized Barycentric Coordinates on Irregular Polygons

نویسندگان

  • Mark Meyer
  • Alan H. Barr
  • Haeyoung Lee
  • Mathieu Desbrun
چکیده

In this paper we present an easy computation of a generalized form of barycentric coordinates for irregular, convex n-sided polygons. Triangular barycentric coordinates have had many classical applications in computer graphics, from texture mapping to ray-tracing. Our new equations preserve many of the familiar properties of the triangular barycentric coordinates with an equally simple calculation, contrary to previous formulations. We illustrate the properties and behavior of these new generalized barycentric coordinates through several example applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bijective Mappings with Generalized Barycentric Coordinates: A Counterexample

Many recent works attempt to generalize barycentric coordinates to arbitrary polygons. I construct a counterexample proving that no such generalization will produce purely bijective mappings in the plane provided the coordinates meet the Lagrange, reproduction, and partition of unity properties. The proof concerns generalized barycentric coordinates in a square, but trivially generalizes to arb...

متن کامل

Streamline tracing on irregular geometries

The accurate and efficient tracing of streamlines is fundamental to any streamline-based simulation method. For grids with irregular cell geometries, such as corner-point grids with faults or Voronoidiagram (pebi) grids, most efforts to trace streamlines have been focused on subdividing irregular cells into sets of simpler subcells, typically hexahedra or simplices. Then one proceeds by reconst...

متن کامل

On the monotonicity of generalized barycentric coordinates on convex polygons

Article history: Received 6 August 2015 Received in revised form 28 January 2016 Accepted 29 January 2016 Available online 11 February 2016

متن کامل

Power coordinates: a geometric construction of barycentric coordinates on convex polytopes

We present a full geometric parameterization of generalized barycentric coordinates on convex polytopes. We show that these continuous and non-negative coefficients ensuring linear precision can be efficiently and exactly computed through a power diagram of the polytope’s vertices and the evaluation point. In particular, we point out that well-known explicit coordinates such as Wachspress, Disc...

متن کامل

Quadratic serendipity finite elements on polygons using generalized barycentric coordinates

We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Graphics, GPU, & Game Tools

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2002